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THE EXPECTED ACCURACY OF A 

PRICE INDEX FOR 

DISCONTINUOUS MARKETS 

Abstract. The primary purpose of this paper is to derive a 
p r i o r i  e s t i mates for the standard errors and 
autocorrelation coefficients of market price levels 
produced by a random walk model. The model applies to 
markets such as real estate where goods are traded only 
irregularly. The data utilized in the model is of the 
goods that have traded at least twice. The theory is 
tested with real estate data from the Arizona housing 
market. The size of the sample needed to achieve a 
specified accuracy in the price levels is also estimated. 



I. Introduction

THE EXPECTED ACCURACY OF A 

PRICE INDEX FOR 

DISCONTINUOUS MARKETS 

In (Wl] we proposed and tested a linear model that was used 
to estimate market returns in real estate or any other 
market where the price of a given good is not determined 
regularly. There it was argued that under certain 
assumptions the estimates are unbiased and of minimal 
variance. The assumptions that guaranteed these 
conclusions are that prices of individual properties follow 
random walks and that these random walks are independent 
and identically distributed. The data analyzed in (Wl] 
gave a certain confirmation of these assumptions. 

The data to which this model applied are so-called "repeat 
sales" data in which the transaction prices of each good 
(e.g., a house) are known for at least two distinct times. 
Now that a great number of real estate transactions are 
recorded on computer, large data sets with this 
characteristic have become available and have materially 
aided in the development of price index models of the sort 
discussed in this paper. 

The model used in [Wl] was developed after studying the 
Bailey-Muth-Nourse model (BMN]. This is true even though 
it is possible to derive the model in (BMN], published in 
1963, as a special case of Court's model which was 
published in 1938 (C]. This can be done by simply omitting 
the "hedonic" variables in Court's model, "suggestion 
number two," and retaining the time variables. In his 
paper Court acknowledges that Sidney w. Wilcox, Chief
Statistician of the U. s. Bureau of Labor Statistics, was 
the person who made the original suggestion to construct 
such models. 

Court's work notwithstanding, historically, the use of 
repeat sales data in linear models whose parameters are 
estimated by the method of least squares was initiated to 
the best of our knowledge by (BMN]. The model developed in 
t h i s w o rk s u ff e r s ,  h o w e v e r ,  fr o m  s e r iou s 
heteroscedastici ty. Removing this heteroscedastici ty is 
the primary practical improvement that was accomplished in 
[Wl]. It was done, roughly speaking, by dividing each 
observation by a quantity that is proportional to the 
standard deviation of the market return over the period 
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between sales. 

Although there is abundant theoretical reason to believe in 
the presence of heteroscedasticity in the Bailey-Muth
Nourse model and the consequent relative unreliability of 
the index numbers that are estimated with it, in [Wl] index 
numbers were estimated with the old Bailey-Muth-Nourse 
model as well as with the new model. The diagnostics 
described in [Wl] suggest that the new model produces more 
reliable index numbers. 

A disadvantage to any model is the number of assumptions 
that must be made in measuring its effectiveness. In [Wl] 
there is only one assumption, the assumption that 
percentage changes in the prices of individual goods follow 
independent and identically distributed random walks in 
discrete time. In the past, however, many observers of 
real estate markets have doubted the truthfulness of this. 
( It is another matter, the robustness of the methods in 
[Wl]. This latter question has not been settled.) 

In [CSl] Case and Shiller acknowledge the importance of 
heteroscedaticity but they approach the problem of 
differently. Instead of an assumption like a random walk, 
they perform a 3-stage regression. Stage one is the same 
as Bailey-Muth-Nourse. Stage two is the regression of the 
squared residuals from stage one against the length of the 
holding period. This produces an estimate of the variance 
of the distribution from which the residual of a given 
observation is chosen. Stage three is the division of the 
observation by the square root of this estimate for 
variance. It is the last stage that removes the 
heteroscedasticity. 

There are two major points to be made. Firstly, the Case 
and Shiller method assumes that variance is a linear 
function of the length of the holding period. Secondly, 
their method reduces to the method in [Wl] if it turns out 
that the constant term in this function is zero. 

As a matter of fact, Case and Shiller discover, at least 
for the data that they analyzed, that their estimate for 
the constant term is bounded well away from zero. Thus the 
two methods, in (Wl] and (CSl], are, in fact, different. 
It has not been studied, however, to what extent the two 
methods produce different estimates for the price levels. 

Whereas the Case and Shiller method avoids the random walk 
assumption, it is exactly this assumption in the method 
developed in [Wl] which allows us in the present work to 
derive a priori estimates for the standard errors and 
autocorrelation coefficients of the index numbers and, 
consequently, to derive also an estimate of how large a 
sample is needed to produce index numbers of a specified 
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reliability. This is accomplished, basically, by being 
able to construct the expected structure of the matrix X'X 
where Xis the data matrix (called a "portfolio" matrix in 
Section III). 
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II. The Price Index Model

In this section we will recapitulate the construction of 
the price index model. For a more 1elsurely and detailed 
version of this construction, see [Wl]. 

Denote by Pi the (unobserved) price level in a given real 
estate market in period i, i = 1,2, ... ,n+l. Let wi be the 
logarithm of the associated price relative. That is, 

Define Wij to be the sum, 

(2) w·.
1J =� 

k=i 

This latter equality is just the logarithmic form of the 
identity, 

Suppose property q was bought in period i for price Pi and 
next sold in period j for price Pj. Let Yi· q be the 
logarithm of Pj/Pi divided by the square root of j-i. 
That is, 

(4) Yijq = log(pj/Pi)/�j-i. 

Then Yijq is an estimate for Wij/Jj - i 
from Equation (2), 

(5) Yijq = 1/Jj - i 
j-1
�
k=i 

In other words, 

where eq is the disturbance term. When a regression is
performea it will be "weighted least squares" because of
the factor, 1/�j-i . 

Equation (5) can be rewritten in more conventional form as, 
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The random walk assumption implies that the distributions 
from which the W are drawn are independent and identically 
distributed. As i a consequence the distributions from which the 
numbers Wi/� j-i  are drawn are homoscedastic, having the 
same variance as w    .ij 

hutch
Pencil



n 

(6) y = � bkxk + e.
k= l 

In Equation (6), y is of the form Yij/4j-i, bk = wk, and 
xk is the "dummy" variable defined by, 

I i � k � j - 1

otherwise. 

It is important to notice in Equation (6) that there is no 
constant term. Hence we cannot expect the residuals from 
the regression to sum to zero. There is evidence in the 
data that we have studied, however, that the actual mean is 
not significantly different from zero. 

The model is not affected by inflation as long as the rate 
of inflation remains constant. And if the rate r changes, 
the effect on the variance is mitigated because it depends 
on the change in the square of 1 + r. For example, if the 
inflation rate increases from 6% to 8% from period i to 
period i + 1, the variance of the distribution from which 
the associated index number is chosen increases by about 
4%. The only way for this to have a material effect on the 
index numbers is that this increase (or decrease) in the 
rate of inflation occurs in most of the periods under 
study (i.e., inflation--or deflation--is occurring at an 
exponential rate throughout most of the entire data set). 
U n d e r  s u c h  c i r c u m s t a n c e s  t h e  c o r r e c t i o n  t o  
heteroscedastici ty would be somewhat different, al though 
not radically so, than what is described here. 

Suppose there are N buy-sell pairs in the data. Then there 
are N equations of the form of Equation (6). We represent 
this system of equations with matrices: 

(7) Y = Xb + e.

In Equation (7), Y is an N-dimensional column vector, X is 
an N by n matrix, b is the n-dimensional vector 
{b1,···,bn), and e is the vector of disturbances. 

Unique least squares estimates of the bk' s exist if and 
only if X is of full column rank or, equivalently, X'X is a 
non-singular matrix. {Here, X' represents the transpose of 
X.) As it happens there are two necessary and sufficient 
conditions on the data that guarantee the non-singularity 
of X'X. First of all, there must be a transaction in every 
period for which we want to estimate a return. Secondly, 
in every period at least one of the goods must be held and 
not sold (i.e., in every period we must be strictly between 
the buy-date and the sell-date of one of the observed 
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goods). We call data that satisfy these two conditions 
"connected". That these two conditions are necessary and 
sufficient for the non-singularity of X'X is called the 
Connectivity Theorem. This theorem was proved in [Wl]. 

It is simple enough to modify the model to accommodate 
either kind of singularity. First of all, if there is no 
transaction in a certain period, one merely omits the 
corresponding variable from the model. Of course, the 
regression procedure produces no estimate for the return 
and price level for the missing period. The estimate for 
the return of the succeeding period includes the return of 
the "missing" period. 

Secondly, suppose all goods purchased prior to a certain 
period have either been sold or are sold in that period. 
Then the regression procedure must be broken into two 
parts. The first part estimates the returns and prices up 
to the pivotal period. The second part estimates the other 
returns and prices. 
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III. Basic Definitions

In order to avoid any possible ambiguity, a period will be 
one of the standard calendar periods (e.g., month, quarter, 
year) and a holding period is the interval, measured in 
periods, between two successive trades of a given good. 
For example, the holding period of a house bought in 1972 
and sold in 1976 is 4 years. We denote by n+l the number 
of periods in the interval of study. 

An elementary holding period has duration one period and 
there are n elementary holding periods in the interval of 
study. It is the market returns during the elementary 
holding periods that our model estimates. 

Occasionally it might be important to remember that the 
actual holding period may differ from our description of 
it. For example, the holding period of a house bought in 
1972 and sold in 1976 is between 5 years (less one day) and 
3 years (plus one day) in duration, depending upon the 
exact days of the transactions. Our model assumes, 
effectively, that all of these holding periods are 
precisely 4 years long. Section IX should be consulted for 
a discussion of how this assumption might affect the 
standard errors of the coefficient estimates. 

Suppose the qth holding period began in period i and ended 
in period j. Then the i through j-1 entries in the qth row 
of the matrix X as defined in the preceding section are 
1/ �j-i. The remaining entries are zero. We will call 
this matrix the portfolio matrix. It is a matrix that not 
only describes the composition of the collection of goods 
under observation at all times duri�the interval of 
study but, also, the weight (i.e., 1/�j-i) appropriate to 
each observation that is necessary to optimize the least 
squares estimates. 

For the qth row of X, the positive integer d = j-i is 
called the duration (of that holding period). We denote by 
m, the mean duration over all holding periods. 

For duration d, fn (d) will denote the probability that a 
randomly selected holding period has duration d. (The 
subscript n is necessary because the probability is also a 
function of the length n of the interval of study.) If 
fn(d) represents the sample probabilities, then m is just 
the mean of d over all holding periods. 
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IV. Model of Trading Activity

In the next section where probabilities are calculated, 
some of the results will depend on how the portfolio of 
properties whose prices are being observed changes through 
time. One of the purpose.s of this section is to model 
trading activity in such a way that these probabilities are 
as tractable as possible, yet robust enough to be useful. 

Denote by M the number of all transactions in a given 
period. M counts all trades in the market, including those 
that do not end up in the two-sales data (i.e. , in the 
portfolio matrix). The basic assumption here is that M is 
constan� over all periods in the interval of study. 

We may assume·with little error that each trade in a given 
period will be followed at sometime by another trade of the 
same good. In other words, each trade can be thought of a 
the "buy" end of a holding period. 

Of the M trades in a given period, let Ma be that number 
(assumed constant over all periods) which are commencing a 
holding period of duration d. By assumption, M is the sum 
of the Ma's. Hence the probability that a holding period 
is of duration d is Md/M. 

We have denoted by n the number of elementary holding 
periods in the interval of study. Thus N, the total number 
of observations in the two-sales data set, is the sum of n 
terms describing, in sequence, the number of "buys" that 
make it into the .two-sales data from each of the first n 
periods. (No "buys" in the last period qualify.) More 
precisely, 

N = (Mn+ ... +M1)+(Mn-1+ ... +M1)+ ... +(M2+M1)+M1 

N = Mn+2Mn_1+ ... +(n-l)M2+M1

n 

(8) N = � (n-d+l)Ma
d=l 

This means that the probabilities are known. They are, 

fn(d) = (n-d+l)Ma/N. 

The partition (8) of N can also be used to calculate the 
number of trades tn(k) in period k that wind up in the two
sales data. 
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n 
L 
d=l 

tn(k) = 
k-1
L
d=l

Md 

Md + 

, k=l or n+l 

n-k+l
� Md, 1 < k < n+l. 
d=l 

Note that tn (k) = tn (n+2-k) . Thus tn (k) is a symmetric 
function. (It will be, roughly speaking, bell-shaped if 
and only if Md > Md+1·>

The number of holding periods Pn(k) actually being observed 
in period k (i.e., the size of the "portfolio" in period k) 
is closely related to tn(k): 

Pn(k) = tn(k+l). 

Thus Pn(k) 
function. 

= Pn(n-k). So ·Pn(k) is also a symmetric 

This model is not a particularly accurate approximation of 
the data studied in [Wl]. For one thing, in [Wl] trading 
activity increased throughout the interval of study. It is 
another question, however, the extent to which the results 
in this paper are robust enough to apply to that kind of 
data. This question is taken up later. 
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v. Probabilities

Suppose s is an entry in the portfolio matrix X and t is 
the next entry in the same row. (The only restriction is 
that s cannot be in the last column.) In this section we 
will be concerned primarily with the relation between s and 
t. 

Let the duration of the row containing s and t be d. Then 
the value of s is either o or 1/[cf. The probability that s 
is O is p(O) = (n-m)/n. The probability that s is 1/{ci is 
p(d) = dfn(d)/n. 

The probabilities p(O) and p(d) actually are conditional 
upon the column of X in which s resides. The values we 
have given are averages over all columns. More precise 
values would assign greater probabilities to p(O) when the 
column number is close to either 1 or n. The exact 
probabilities conditional upon the column of s depend upon 
the distribution of portfolio size through time or, 
equivalently, the distribution of transactions contained in 
the two-sales data. (See the discussion of Pn(k) and tn(k) 
in Section IV.) At the present time we are developing the 
theory independent of a detailed specification of these 
distributions. In the future it may prove desirable to 
include such specifications in our calculations. 

The probability of t as a function of s is given in the 
following table. 

t=O t#O 

s=O l-n/(n-1) (n-m) n/(n-1) (n-m) 

s#O n/m (n-1) l-n/m(n-1)

Comments similar to the ones in the preceding paragraph can 
be made. For example, p (t=O I s=O} is larger for an end 
column and smaller for a beginning column. This is 
especially true if m is large. (The difference is small 
when m is small.) On the other hand, p(t#Ols#O} is smaller 
for an end column and larger for a beginning column. This 
effect is also made greater if m is large and is only 
minimal if m is small. It should also be pointed out that 
these probabilities break down for very large values of m 
(i.e., values close to n). In any practical situation, 
however, m will be bounded significantly away from n. 

The crucial probability for us is p (s=t). It can be 
derived in the following way using the preceding results. 
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p(s=t) = p(s=t=O) + p(s=t#O) 

= p(t=Ols=O)p(s=O) + p(t#Ols#O)p(s#O) 

= (l-n/(n-1) (n-m)) ((n-m)/n)+(l-n/(m(n-l))m/n 

= (n-m)/n - 1/(n-1) + m/n - 1/(n-1) 

= 1 - 2/(n-2) 

= (n-3)/(n-1). 

This is a probability that only makes sense if n>3. 
Therefore this result and all subsequent ones apply only to 
the case n>3. It is also true that the quantity 
(n-3)/(n-1) can itself be derived more simply by noting 
that there are only two chances in n-1 that s#t. 

The particular derivation given of p(s=t) is useful because 
it allows us to relate our comments on the conditional 
probabilities p(tls) to the number (n-3)/(n-1). They imply 
the amount that the first term in the first line of the 
derivation exceeds (falls short of) the indicated value is 
at least partially offset by a corresponding decrease 
(increase) in the value of the second term. Therefore the 
expectation is that p(s=t) is quite closely approximated by 
(n-3)/(n-1) as long as n is sufficiently greater than 3. 
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VI. Expectations

In this section a column of the portfolio matrix x is 
represented by x. Our first objective is to compute the 
expected value of the ordinary "dot product" x. x. This 
product is the sum of all the squared components of x and 
appears as a diagonal element of X'X. Geometrically it is 
the square of the distance of x from the origin in N
dimensional euclidean space. 

For d>O, let Nd be the number of components of x whose 
value is 1/(cf. Nd is defined for all positive integers for 
1 to n. Using E to represent the expectation operator, 

n 
E(x X) = EL (Nd/d)

d=l 

n 
= L E(Nd)/d

d=l 

n 
= L. (1/d)Ndf (d)/n 

d=l 

n 
= N/n L f(d) 

d=l 

= N/n (1)

= N/n. 

We note that this value of N/n is not an approximation but 
is exact, given that E(Nd) is independent of column. (This 
is, strictly speaking, not true for reasons given in 
Section V.) In ordinary terms, N/n is the mean size of the 
portfolio represented by the two-sales data set. That is, 
it is the mean number of properties that are between their 
buy-date and sell-date at any one time. 

The foregoing calculation has determined the expected value 
of a diagonal element in the matrix X'X. As we have said, 
because of remarks in Section V, it is known that E(Nd) is 
not, strictly speaking, independent of the column number of 
x. Therefore N/n is not the expectation of every diagonal
element. It is, however, the mean expectation over all
diagonal elements.

In order to approximate the off-diagonal elements, let y be 
a column different from x. We first assume x and y are 
adjacent columns. Thus x•y is an element just above (or 
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below) the main diagonal. From Section V we know that the 
probability is (n-3)/(n-1) that corresponding entries of x 
and y are equal. Therefore, using the immediately 
preceding result, we can approximate, 

E(x y) = (n-3)/(n-1) E(X•X) 

= (n-3)/(n-1) N/n. 

The first line of this derivation is only an approximation 
because the same components of x and y cannot be 1' s. 
Therefore the right hand side of this equation tends to 
overstate the left hand side. 

Now we consider the case when x and y are not adjacent 
columns of X. Let s, t, and u be three successive elements 
in a row of X. We know that p(s=t) = p(t=u) = (n-3)/(n-1). 
Were it true that the events s=t and t=u are independent, 
it would follow that p(s=t=u) = p(s=t)p(t=u) = 

[(n-3)/(n-1)] 2 . By induction it would follow, 

(9) E (x• y) = N/n [ (n-3) / (n-1) ] li-j I

where x is the ith column of X and y is the jth column of 
X. Note that this expression is consistent with the
earlier result for i-j = -1, o, or 1.

Although it has not been possible to derive a 
mathematically precise description of the difference 
between the two sides of (9), we shall see that results 
based on this assumption are robust enough to justify it. 

X'X is the variance-covariance matrix of the variables 
x1, .•. ,Xn· (In the next section, the variance-covariance 
matrix of the estimates b1, ... ,bn is studied.) If N/n is 
factored out, we ,ob,tain the correlation matrix. It is of 
the form, A = (a l 1-JI) where a = (n-3)/(n-1). 

One must be careful in interpreting the correlation 
coefficients given by the matrix A. This is because the 
value of Xj for a given observation (i.e., holding period) 
is determined by the value of Xi, i<j, and the length of 
the holding period remaining after period i. Therefore, in 
an important sense, the stochastic relationship that one 
usually expects between the variables of a (linear) model 
is missing. 

More properly, what the correlation matrix does measure is 
the overlap between the portfolio being observed during the 
ith elementary holding period and the portfolio being 
observed in the jth elementary holding period. (The 
portfolio being "observed" during the ith elementary 
holding period is merely those individual holding periods 
that include the ith elementary period.) A high value for 
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this correlation coefficient signifies a lot of overlap. A 
low value signifies little overlap. In this regard, a 
value of 1 implies the portfolios are identical. A value 
of zero implies the portfolios are disjoint. (For the 
particular matrix A, of course, l's only occur on the 
diagonal and O's are entirely absent.) Simple examples 
show, however, that in general there is no precise 
relationship between the correlation coefficient and the 
fraction of overlap. 

For the model of correlation represented by the matrix A, 
the correlation coefficient of lag d is ad-1 where O<a<l. 
Therefore the composition of the portfolio is changing and 
tending toward being completely renewed as time passes. 
This is exactly our intuitive evaluation of a market. 
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VII. The Variance-Covariance Matrix

The variance-covariance matrix for the bi's is a-'"(X'X) -1
where a-� is the variance of the y variable in (6) and X is 
the portfolio matrix. From Section VI we know that X'X 9a� 
be approximated by N/n A where the entry aij in A is a fi-JI
and a = (n-3)/(n-1). 

The inverse of A has a particularly simple form: 

1 -a
-a l+a2 -a

-a l+a2 -a

-a l+a2 -a
-a 1 

where the other entries of the matrix are zeros. It is not 
difficult to see that the determinant of A is (1-a2 )t'l-1. 
[K], [T) and [HJ) can be consulted for a discussion about 
such matrices. 

The information provided by A-1 is summarized below. v is 
used as the covariance operator. 

, i=j =l or n 

cr"""n(l+a2 )/N(l-a2 ), l<i=j<n 

- €an/N ( l-a2)

0 

, f i-j I= 1 

, \i-j t > 1 

The most interesting feature of this result is the negative 
sign when li-jl = 1. In other words, with a lag of 1, the 
estimates are negatively correlated. As n increases, it 
can be shown that the mean of all of the n-1 correlation 
coefficients of lag 1 approaches the value -0.5 as a limit. 
Sample values are -0.42 36 (n=5), -0.5134 (n=lO), and 
-0.4977 (n=2 0). (This is studied in more detail in Section
X.)

With a lag greater than 1, the model predicts that the 
estimates bi are uncorrelated. 
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VIII. Empirical Results

In this section we compare the sample variances and 
covariances of the estimated parameters as reported in [Wl] 
with the variances and covariances which are predicted with 
the 

.
theory that has been developed in the preceding 

sections. In order to formulate a more comprehensive
evaluation of this theory, a substantially larger data set 
is also analyzed. This larger data set is from Pima 
County, Arizona and contains 3675 buy-sell observations. 
On the other hand, the original data set, from Cochise 
County, Arizona, contained only 672 such observations (631 
observations in the "edited" version). Particularly for 
Pima County, a very satisfactory agreement between theory 
and observation will obtain. 

This is probably a good indication for future analysis 
because in the work of other investigators, data sets 
notably larger than our data set for Pima County have been 
collected and analyzed. For example in [CSl] four data 
sets are analyzed. The smallest contains 6669 
observations, whereas the largest contains 15,530 
observations. In [AS] one of the data sets analyzed 
contained 174,000 observations. With the continuing 
computerization of real estate data, there is reasonable 
expectation that sufficiently large data sets will be 
routinely available to guarantee an accuracy that will make 
regression methods of price level determination applicable 
to a wide-range of problems in the area of real estate. 

The theory predicts variances and convariances as multiples 
of o-2; the variance of the y variable (i.e., the log of the 
price relative divided by the square root of the holding 
period's duration). Therefore, the comparison between 
theory and empirical results should be between the matrix 
(X'X) -1 calculated in Section VII and the matrix (X'X) -1 
arrived at in the analysis of actual data. 

TABLES 1 and 2 present the pairs of matrices which 
correspond to the annual data sets analyzed in [Wl] (i.e., 
Cochise County and the edited Cochise County) . TABLE 3 
presents the pairs of matrices which correspond to the 
annual data from Pima County over the same interval of 
time. The reader is referred to [Wl] for a more complete 
discussion ( in the case of Cochise County) of how the 
empirical results were developed and what the actual return 
estimates and price levels are. 
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THE VARIANCE COVARIANCE MATRIX (X'X)-1

Cochise County, Arizona, 1971-76 

Empirical 

.0180 -.0050 -.0004 .0000 .0000 
(-.346) 

.0116 -.0044 .0000 -.0000 
(-.390) 

.0110 -.0028 -.0003 
(-.315) 

.0072 -.0025 
(-.346) 

.0072 

Theoretical 

.0099 -.0050 0 0 0 
(-.447) 

.0124 -.0050 0 0 
(-.400) 

.0124 -.0050 0 
(-.400) 

.0124 -.0050 
(-.447) 

.0099 

Note. The numbers in parenthesis are correlation 
coefficients. 

Summary Empirical 

Mean variance .0110 
Mean covariance -.0037 

( lag 1) 
Mean corr. coef. -.350 

( lag 1) 
Mean covariance -.0001 

(lag > 1) 

TABLE 1 

Theoretical 

.0114 
-.0050 

-.424 

0 

Rel. Error 

4% 
26% 

17% 
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THE VARIANCE-COVARIANCE MATRIX (X'X)-1

Cochise County, Arizona, 1971-76 (edited)

Empirical 

.0185 -.0052 -.0005 .0000 .0000 
(-.350) 

.0119 -.0046 .0000 -.0002 
(-.392) 

.0116 -.0031 -.0003 
(-.322) 

.0080 -.0031 
(-.378) 

.0084 

Theoretical 

.0106 -.0053 0 0 0 
(-.448) 

.0132 -.0053 0 0 
(-.402) 

.0132 -.0053 0 
(-.448) 

.0132 -.0053 
(-.448) 

.0106 

Note. The numbers in parentheses are correlation 
coefficients. 

Summary Empirical 

Mean·variance .0117 
Mean covariance -.0040 

(lag 1) 
Mean corr. coef. -.361 

( lag 1) 
Mean covariance -.0002 

(lag > 1) 

TABLE 2 

Theoretical 

.0122 
-.0053 

-.424 

0 

Rel. Error 

4% 
25% 

15% 
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THE VARIANCE-COVARIANCE MATRIX (X'X)-1

.0024 

.0018 

Pima County, Arizona, 1971-76 

-.0011 
(-.417) 

.0029 

-.0009 
(-.442) 

.0023 

Empirical 

.0000 

-.0011 
(-.457) 

.0020 

Theoretical 

0 

-.0009 
(-.391) 

.0023 

.0000 

.0000 

-.0007 
(-.391) 

.0016 

0 

0 

-.0009 
(-.391) 

.0023 

.0000 

.0000 

.0000 

-.0006 
(-.387) 

.0015 

0 

0 

0 

-.0009 
(-.422) 

.0018 

Note. The numbers in parentheses are correlation 
coefficients. 

Summary Empirical 

Mean variance .0021 
Mean covariance -.0009 

( lag 1) 
Mean corr. coef. -.413 

( lag 1) 
Mean covariance .0000 

(lag > 1) 

TABLE 3 

Theoretical 

.0021 
-.0009 

-.424 

0 

Rel. Error 

0% 
0% 

3% 
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The single statistic of greatest interest is the variance 
of the coefficient estimate. This is measured by the 
appropriate diagonal entry of the (X'X)-1 matrix.
(Actually the variance is this entry multiplied by the 
variance of the y variable. But in computing relative 
differences, which is the appropriate method of measuring 
error in this situation, this common factor can be 
disregarded. ) 

In Tables 1-3, all of the diagonal entries for both the 
empirical matrices and the theoretical matrices are given 
for the three data sets that were analyzed. The means of 
these diagonal entries are also given. The means can be 
used as an overall measure of the reliability of the 
coefficient (i.e., price level) estimates. 

For the two small data sets from Cochise County, one 
observes that there is a 4% relative difference between the 
mean diagonal entry of the empirical matrix and the mean 
diagonal entry of the theoretical matrix. (This translates 
into a 2% relative difference between standard errors.) We 
rate this as being at least modest evidence that the model 
is working. 

For the larger data set represented by Pima County, the 
mean diagonal entry of the empirical matrix and the mean 
diagonal entry of the theoretical matrix are identical (to 
2 significant digits). We rate this as stronger evidence 
that the model is working. 

With the smaller data sets, there is a degradation of these 
results for the covariances between the variables. Here 
the relative differences between means increase to 26% and 
25%, respectively. Not a good fit. But with the larger 
data set, this relative difference is again zero (to the 
precision of the computation). on balance, at least modest 
evidence that the model is perfoming well. 

The second most interesting statistic is the correlation 
coefficient of lag 1 between the coefficient estimates. 
This is because our model leads us to expect a negative 
correlation coefficient that approaches -0.5 as the number 
of index numbers to be estimated approaches infinity (see 
Sections VII and X). For n = 5, the case for the annual 
index series for the Arizona data, the value predicted by 
the theoretical model is -o. 4236. This differs from the 
empirical results by 15-17% for the small data sets from 
Cochise County both of which exhibit less than the expected 
negative correlation. (This accuracy is line with what we 
have been led to expect from this particular data.) On the 
other hand, it differs from the empirical results by only 
3% for the larger Pima county data set. This is usually a 
satisfactory result for a measurement of serial 
correlation. 
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The other results produced by the variance-covariance 
matrix is the covariance between the variables of lag 
greater than 1. The theory predicts a value of zero which 
corresponds to the (precisely) zero values above the 
superdiagonal in the theoretical variance-covariance 
matrix. In fact, except for one value of -0.0005 for the 
Pima edited data all of these entries in all three of the 
empirical (X'X)-i matrices round to zero thousandths. 

One notes there are only minor differences between the 
empirical (X'X) -1 matrices for the two sets of Cochise 
county data. The differences in the reliability of the 
price level estimates derives almost completely from the 
substantially larger standard deviation of the y variable. 
For the unedited data this value is 0.468, whereas for the 
edited data it is only 0.184. In other words, there is 
significantly greater variability in the prices of the 
unedited data. When the observations that contribute to 
this variability are deleted, the reliability of our 
computations is of course correspondingly increased. 

It is interesting that there is not much difference in the 
standard deviations of the y variable between Pima County 
and the edited Cochise County. Pima has a value of 0.221 
whereas, as already reported, the edited Cochise is 0.184. 
Thus the greater reliability of the index numbers for Pima 
derives from the greater number of observations in the Pima 
data set. our theory predicts that the standard errors of 
the coefficient estimates are inversely proportional to the 
square root of the size of the data set. (This prediction, 
by itself, can be derived without relying on our model of 
the variance-covariance matrix.) One predicts, therefore, 
that the diagonal entries of the empirical (X'X)-1 matrix 
for the edited Cochise data should be 3675/631 = 5.8 times 
as large as the corresponding entries for the Pima data. 
In fact, they are not far from this value, being, on 
average, 117/21 = 5.6 times as large (see Tables 2 and 3). 
And much of the discrepancy between these two ratios, only 
4% in relative terms, could be explained by a rounding 
error in the denominator of the second ratio. 

Although the results in this Section; especially for Pima 
County, provide good confirmation of our theory, it should 
be noted that the theory suggests that for larger values of 
n the theory should perform even better. (See Section V.) 
This is only to say that the primary objective in this work 
is theoretical and that the theory must be applied to a 
variety of data sets in order to have a complete evaluation 
of it. 
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IX. Analysis of Variance

In (Wl] it was noted that the model produces non-zero 
standard errors even if the data is continuous (i.e., there 
is a price for every good in every period) . This "is 
merely a measure of the dispersion of the yields of the 
individual properties. Hence it is a measure of how much 
we can expect the market return to vary over time" [Wl]. 

Let us call the variance that would 
continuous set of date were available, 
component. The remaining component 
"discontinuous" component. 

exist even if a 
the "continuous" 

is called the 

Roughly speaking, the size of the discontinuous component 
is measured by m, the mean duration of a holding period 
(Section III). That m is greater than 1 is the simplest 
expression of discontinuity in the data. 

The purpose of this section is to measure the relative 
sizes of the continuous and discontinuous components more 
precisely. We will show that usually the discontinuous 
component is greater than the continuous component and, 
hence, most of the standard error in the coefficient 
estimates is due to our imperfect knowledge and not to 
dispersion in the yields of the individual properties. 

Denote by P the number of distinct properties represented 
in the 2 -sales data. If the data is continuous, then by 
what we have observed in (Wl) and in Section VII, the 
variance of each coefficient is cr-;P, where er- is the 
variance of the y·variable. 

In Section VII the variances in the general case were 
computed. The mean of all of them is, 

"3,-.. 

0- /2 N (n2 - 3n + 5 + l/(n-2)).

Thus the fraction fc., of the total variance that is the 
continuous component is, 

fc = (1/P)/((n2 - 3n + 5 + 1/(n-2 ))/2 N) 

= 2N/P(n2 - 3n + 5 + l/(n-2)). 

If m1 = N/P denotes the mean number of holding periods per
property, then, 

fc = 2m1/(n2 -3n + 5 + 1/(n-2)).

The fraction f0 of the total variance that is the
discontinuous component is simply one less fc: 
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X. Negative Serial Correlation

Primary assumption has been that market returns are 
drawings from distributions that are independent and 
identically distributed. Therefore, by assumption, there 
is zero correlation between the true returns from different 
elementary holding periods. 

The situation is quite different with the least-squares 
estimates for these returns, however. In Section VII it 
was shown that the model leads us to expect negative serial 
correlation between the estimate of a return and the 
estimate for the succeeding return. In this section we 
want to investigate more fully this negative correlation. 
We rely on results developed in Section VII. 

Using these results, we can 
coefficient between bi and bi+l ·
correlation coefficient is, 

compute the correlation 
If i = 1 or n-1, this 

ri 
= -(n-3)/ 2 (n2 - 4n + 5) .

For other i, the correlation coefficient is; 

ri = -(n-1) (n-3)/2 (n2 - 4n + 5).

The mean of these n-1 correlation coefficients is, 

mean = - (n-1) (n-3) 2 + (n-3) J 8 <n2 -4n + 5)
2 (n-1) (n2 - 4n + 5)

As n increases, this last expression (for the mean)
approaches -0.5. Examples of the values it assumes are
-0.42 36 (n=5), -0.5134 (n=lO), and -0.4977 (n=2 0). Note
that these values do not approach -0.5 monotonically.
There are, however, only a finite number of oscillations
about -0.5 before the approach does become monotonic. If
n > 6, the mean is within 0.02 of -0.5.
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Algebraically, the explanation of negative correlation is the 

�-

presence (noted in Section VII) of negative entries in the off-

-r
diagonal elements (i, i + 1) and (i, i - 1) of the matrix A 

The reason that the correlation coefficient only assumes two values 

for a given value of n is due to the fact that all of the non-zero 

off - diagonal entries are equal and that the diagonal entries are 

equal except for the first and last wnich are equal to each other. 

All correlation coefficients with lags greater than 1 are zero 

because all entries not adjacent to the main diagonal of A-I are zero. 

These comments summarize all that need be said algebraically about the 

correlation between coefficient estimates. 

It is useful also to portray negative correlation geometrically. 

The concept that unifies the algebraic and geometric aspects of 

correlation is the concept of collinearity. 

As in previous sections, let x and y denote adjacent columns 

in the portfolio matrix X. The geometric measure of collinearity is 

the angle 6 between X and yin N - dimensional Euclidean space. 

The cosine of this angle is simply the non - mean - adjusted correlation 

coefficient -��·--�Y���� 
' II xii ii YU 

between the two variables x and y. 

This correlation coefficient was estimated in Section VI and is, 

n - 3 
approximately, a = ��� 

n - 1 
The following table contains the value

of this fraction and the corresponding angle for selected values of n. 
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n a 

5 .500 60
° 

10 . 778 39
° 

15 .857 31° 

20 .895 270 

25 .917 2.40 

30 .931 210 

100 .980 12° 

00 1.000 0
0 

TABLE 6 

In this paper and (Wl) three different data sets for annual returns 

were analyzed. The value of n in each of these cases was n = 5. The 

following table reports the angles between adjacent variables in the 

market return model for these three cases. 
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'!ariables 

Cochise 

X1 and �� 2 .3982 

�: 2 ac1.d X3
.4622 

X3 and X4 .3898 

;:4 and X5 .3893 

I 
�Iean .4099 

X . 

tlx 11 

Cochise 

.4021 

.4610 

.4027 

.41'18 

.4205 

y 

II Y II 
-----

(ed:i_ted) Pim2. 

.47S0 

.5228 

.4873 

• L, 2 ') 7 

.L,773 

I L'\rccosine of 
0 0 0 

Yean 66 65 61 

Predicted 
T:Cean . snoo .5000 .50000 

Arccosine of 
Predicted 60 ° 60 ° 60 ° 

l·Iean 

TA:SLE 7 

In TaJ:,le 7, the numerators, x.y, are the entries (i, i + 1) 

in the '."latrix The values of II-xii and II Y II are the square 

roots of the ith and (i +l) th diagonal entries of the same natrix. 

In other words, the geometry of the variables is determined by 

the �: 1 :c 1;1atrix. (Tiually, the geometry of the coefficient esti�ates 

l• S d e t er m 1 
• n e d b . y t 1 h e 1 

• n v e r s e n a t r • ix r ( ., V .. ! . y'\ -I 1 • )

As one can see from Ta�le 7, the �£?rement between pre- dieted 

and actual is quite good for Pima, where the 
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angle between adjacent variables is 60° , whereas the 

actual is 61° . This corresponds closely with the results reported

in Section VIII where the predicted and actual values of the correlation

between return estimates were presented. (Good results concerning the 

matrix (X'x)-1 of course go hand in glove with good results concerning

the matrix x'x.)

Just as in Section VIII, the results are not as good for Cochise. 

Here the actual values are 66° and 65° whereas the predicted value is 

again 60° . The reasons for the model's decreased .. accuracy were discussed 

at the end of Section VIII. As we have observed there is not signifi

cant negative correlation in the annual series (Table 6 of (Wl) ). This 

is consistent with the large angles 60° - 70° between adjacent variables 

in the annual data. 

In order to study negative correlation we must look at the monthly, 

quarterly and semi-annual return estimates. 

been judged relatively inaccurate (Wl). 

These estimates have already 

Table 6 in (Wl) reports that the negative correlation between return 

estimates are - .3132, -.4882, and -.5290 for the monthly (n= 76), 

quarterly (n=25) and semi-annual (n•l2) series, respectively. The first 

of these numbers varies considerably from the predicted value but the 

latter two correspond quite closely with those predicted in Table 5. 

On the whole, the actual results conform fairly well with our expecta

tions. 

The expected angles between adjacent variables for these three 

cases are 13° , 24° and 35° , respectively. 

computed just as those in Table 6.) 

(These values were 

Geometrically, there are two observations that can be made about 

coefficient estimates made when the angle between the variables is small. 
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The first observation is the decreased accuracy which is, geometrically, the 

relatively large interval that is the projection of Xb= X(X'X)-1 X'y onto each 

of the vectors x and y. 

The second observation is the relatively small area in the plane 

generated by x and y that is between the vectors x and y. (It is 

this area between x and y that corresponds to positive estimate for both 

coefficients of x and y.) In other words, for larger values of n i t 

is relatively improbable that coefficient estimates for adjacent 

variables are of the same sign. Hence the expectation that coeffi�ient 

estimates are negatively correlated. (Negative correlation is not 

equivalent, of course, to alternation in sign. Alternation explains 

to some extent, however, the negative correlation.) 

With knowledge of the negative correlation between estimates, one might 

at first suspect more accurate coefficient estimates could be 

derived perhaps by using an averaging strategy. Common averaging 

strategies are, however, linear transformations. Therefore, given 

our assumptions about the model, the Gauss -Markov theorem assures 

us. that-,the minimum variance unbiased linear_.estimates are already 

known.' Therefore, a non-trival unbiased linear transformation of our 

estimates cannot but inct:ease . ..the variance. The existence of a 

biased linear estimate or an unbiased non-linear estimate that might 

have attractive properties is not know"'ll at this time. 
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XI. Data Collection

one of the advantages in having a model like that which h�s 
been constructed is that, given a data set of a certain 
size it allows us to compute how fine an index is allowed 
in o'rder to achieve a specified reliability in the index 
numbers. For example, with 10,000 buy-sell observations 
over a 15-year interval, the model would tell us how fine 
an index could be constructed (e.g., quarterly) that would 
achieve a specified accuracy. 

Alternately, given a certain fineness in the index (e.g., 
quarterly) and a requirement for reliability, we would be 
able to compute the size of the data set necessary to 
achieve these joint objectives. For example, the model 
would tell us how many buy-sell pairs would be needed to 
compute a quarterly index with standard errors of a certain 
size. 

Unfortunately, the absolute size of the standard errors is 
not an independent variable because the variance of the y 
variable is a scalar factor in the variance-covariance 
matrix. This is unavoidable however because the movement 
of the index is ultimately controlled by the movements of 
the prices of each of the underlying properties. And the y 
variable is a measure of these underlying individual 
prices. 

In Section VII this was made precise where, for example, 
the variance of the ith coefficient, 1 < i < n, was shown 
to be, n(l + a2 )/N(l - a2) multiplied by the variance of 
the y variable. (a has the value (n-3)/(n-1).) If we let 
K be the mean of all of these factors over all the 
coefficients, then 

(10) K = n2 - 3n + 5 + 1/(n-2 ) .
2N 

K turned out to be 0.0110 for Cochise County (unedited) and 
0.002 1 for Pima County. 

The important thing about (10) is that it relates sample 
size (N), the fineness of the index (n), and the 
reliability of the index numbers (K). Thus if two of these 
variables are known, the third can be computed. 

The Figure is a graph of the level curves of this 
relationship corresponding to K = 0.002 5, 0.0050, 0.0100, 
0.0200, and 0.0400. 
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The following Table 4 is a representative set of 
information from the Figure. The data sets analyzed in 
this paper and in [Wl] are points in the upper lefthand 
corner of this Table (i.e., the lower lefthand corner of 
the Figure). Data sets analyzed in [CSl] and [AS] are 
points off to the lower right of Table 4 (i.e., off to the 
upper right of the Figure). 

34



ACCURACY OF PRICE LEVELS 

n N 

K=.0025 K=.005 K = .01 K=.02 K=.04 

4 1900 950 475 238 119 

5 3067 1533 767 383 192 

6 4650 2325 1163 581 291 

7 6640 3320 1660 830 415 

8 9033 4517 2258 1129 565-

9 11829 5914 2957 1479 739 

10 15025 7513 3756 1878 939 

11 18622 9311 4656 2328 1164 

12 I 22620 11310 5655 
I 

2828 1414 

I 
13 I 27017 13508 6754 • 3377 1689 

J 

14 I 31815 
I 

15908 7954 3977 1988 

l I 

37014 18507 9254 4627 
! 

2313 15 I 

I 

16 42613 
j 

21307 10653 5327 ' 2663 
' ' 

17 48613 24306 I 12153 6077 
1 

3038 i 

18 55012 27506 13753 6876 3438 

19 61811 30906 ; 15453 7726 3863 

20 69011 34505 17253 8626 4313 

TABLE 
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