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Abstract. A linear model is constructed that allows estimation of 

price levels in markets wherein goods are traded only irregularly. 

The model is tested with real estate data collected by the state of 

Arizona. The assumption of the model is that prices of individual 

properties follow independent random walks. The results presented 

here amplify work done by Court in 1938 and by Bailey, Muth and Nourse 

in 1963. 

1. Introduction

Methods for computing price levels in the real estate market or any 

other market wherein a given good is traded only irregularly are less 

precise than those methods for computing price levels in other types 

of markets such as stocks or consumer goods. In both these markets, 

most goods are traded regularly, that is, goods which are perfect 

substitutes (e.g., shares of IBM) are traded at regular intervals 

(e.g., on trading days of the NYSE). Clearly similar conditions are 

not met in the real estate market, since any given property,is usually 

quite distinct and is traded only irregularly. 

To be sure, there are several price indexes currently used in the real 

estate market, for example, the mean price of new single-family houses 

[1J, a hedonic (i.e., quality-adjusted) price index for new single­

family houses [2 J, and the mean price of existing single-family houses 

[3J, [4J. Of these, only the hedonic index in [2J takes account of 

changes through time in the set of properties traded. In particular, 

there is no definitive index that measures price levels of existing 

single-family houses . 

. Because of the relative lack of price information in real estate mar­

kets, the reliability of a real estate price index is necessarily less 
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2, Theory 

In order to build the price index model, let Pi denote the (unobserved) 
market price level in period i, i = 0,1 , ... ,n, and let wi be the 

logarithm of the associated price relative, wi = log(Pi/Pi_1 ). Define 
wij to be the sum of the wk' s, k = i+1, ... ,j. 

An implication of the random walk assumption is that the distributions 
for which the wi's are drawn are independent and identically distrib­

uted. It is also true, for the same reason, that the distributions 

from which the quantities wij(j-i)-112 are drawn are homoscedastic.

Suppose property 1 was bought in period i for 
-1

price 
2 

pi and next sold 

in period j for Pj· Let Yij .e. 
= log(pj/Pi)(j-i) 1 • Then Yij .e. 

is an 

estimate for wij(j-i)-1/2. In other words

(. ·)-1/2( ) J-1 wi+1 + ,., wj + e
.e.
,

where e
.e. 

is a disturbance term. When a regression is performed, it 
will be "weighted least squares" because of the factor (j-i)-1/2 in 

equation (1). 

Equation (1) can be written in the conventional form, 

( 1 ) 

(2) 

where Y is of the form Yij .e.
(j-i)-112, bk= wk, and xk is the 'dummy'

variable, xk (j-i)-112, k = i+1 , ... ,j, and xk = O, otherwise. The
object is to estimate the coefficients bk, k = 1 , ..• ,n. 

It is important to notice in equation (2) that there is no constant 
term. Hence we cannot expect the residuals from the regression to 

total (exactly) zero. There will be evidence in the data we analyze, 
however, that the actual mean residual is not significantly different 
from zero (section 3), 

Assuming individual properties follow independent random walks, the 
true disturbances are uncorrelated and have mean zero. It is a con­

sequence that the least-squares estimates for the bk's are unbiased 
and of minimum variance among all unbiased estimates that are linear 
transformations of the vector of y values. These optimality proper­
ties are direct consequences of the Gauss-Markov theorem [12J. 

The end results of our calculations are the values Pi/Pi_1, the market 
price relatives. It is, however, the value log(Pi/Pi_1) that is 
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estimated by bi. This means that if c is the expected value of bi the
expected value of Pi/Pi_1 is ev/2ec where v is the variance of the
estimator bi. In our dat� (section 3), however, the factor ev/2 is
very nearly 1. (For the three data sets that were analyzed, it was 
1 .0012, 1.0002, and 1 .0001 .) The difference between using the correc­
tion factor ev/2 and not using it, is several orders of magnitude
smaller than the standard deviations of the estimates (which average 

.0483 for the annual series and larger for the finer series). It was, 
therefore, neglected. 

Notwithstanding the influence of the Gauss-Markov theorem in the 
formulation of our model, in [15J it will become apparent there is 
some natural multicollinearity in the model. This is especially true, 
in real estate markets, whenever the time periods are one month in 

duration. Therefore we should not be surprised if estimates of 
monthly price levels are unreliable. This will be true of the data we 

analyze in the next section. 

Suppose there are N buy-sell pairs in the data. Then there is a 
system of N equations of the form of equation (2) .• Such a system can 

be represented with matrices, y = Xb + e, where y and e are N­
dimensional column vectors, Xis an N by n matrix, and bis an n­
dimensional column vector. 

There are two necessary and sufficient conditions on the data that 
guarantee the nonsingularity of the matrix X'X. First of all, there 
must be a transaction in every period for which we want to estimate a 
return.· Second, in every period at least one of the properties must 

be held and not sold (i.e., in every period we must be strictly 
between the buying date and the selling date of one of the observed 
properties). We call data that satisfy these two conditions 
"connected". (This term has been applied to similar conditions: for a 
discussion see [13J.) 

It is not hard to see that these two conditions are necessary for non­
singularity. That the conditions are also sufficient can be derived 
from a theorem in the theory of M-matrices [14J. This derivation is 
contained in section 4. We are grateful to Charles Johnson and the 
editors of Linear Algebra and Its Applications for this observation. 

It is simple enough to modify the model to accommodate either kind of 

singularity. First of all, if there is no transaction in a certain 
period, one merely omits the corresponding variable from the model. 



Of course, the regression procedure produces no estimate for the 

return and price level for the missing period. The estimate for the 

return of the preceding period includes the return of the "missing" 

period. 
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Secondly, suppose all properties purchased prior to a certain period 

either have been sold or are sold in that period. Then the regression 

procedure must be broken into two parts. The first part estimates the 

returns and prices up to the pivotal period. The second part 

estimates the other returns and prices. 

The model can be illustrated with a small example (Table 1). 

Property 

2 

2 

3 

3 

Table 1 

Period of 

1 

3 

2 

2 

3 

Trade Price 

1000 

1500 

1200 

1600 

2000 

2500 

For these data the Y vector and the X matrix are the following 

y 

X 

2-1/21og(1500/1000)

log(1600/1200 

log(2500/2000) 

0 

0 

[ .2867 l
.2877 

.2231 
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From this it follows that the least squares estimate of b 
is, 

[ 
.2614 

J.1968 
b 

Thus, setting Po 
e. 1 968 = 1 • 22

1, we have P1/Po = e.2614

A limiting case for the model is when all holding periods are one 
period in duration. In this case, one of the variables xi is 1 and
the remainder are O. In other words, the rows of the X matrix each 
contain a single 1. The remaining entries are O. 

In this situation it is easy to see the matrix X'X is diagonal. The 
entry in the (k,k) position is the number of properties held during 
the kth period. Therefore the market return for period k is the geo­
metric mean return of the individual properties held in this period. 
In this sense, the market return is known without the possibility of 
error. The non-zero variance of the return is merely a measure of the 
dispersion of the yields of the individual properties. Hence it is a 
measure of how much we can expect the market return to vary over time. 

3. Empirical Results

Our data is the set of all transactions in Cochise County, Arizona. 
involving single-family housing which traded at least twice in the 
78-month interval from January 1971 through June 1977. This data was
originally collected by the state government of Arizona. We are
grateful to Roger Ibbotson for making it available to us.

In the data there are 798 properties that changed hands at least twice 
in different months. Of these, 662 changed hands only twice. There 
were 116, 17, and 3 properties that changed hands 3, 4, and 5 times, 
respectively. None changed hands more than 5 times. These transac­
tions constitute a total of 957 holding periods. The mean duration of 
a holding period was 22.991 months. 

There were no transactions recorded in December 1971 and so in esti­
mating monthly returns, month 12 has been omitted. Therefore, the 
estimated return for November 1971 is really an estimate for the two­
month return over November and December. 
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can probably expect a significant increase in accuracy by being able 

to identify outliers properly. 

The serial correlation of each of the four series is displayed in 

Table 5. All but the annual series exhibits negative correlation 

ranging from -.3132 for the monthly series to -.5290 for the semi­

annual series. The confidnece that the correlation cannot be explained 

by chance fluctuation in the estimates ranges from 99% for the monthly 

and quarterly series to 95% for the semiannual series. 

The annual series, on the other hand, exhibits a positive serial 

correlation of .4741. There are only 5 returns in this series, 

however, so although that figure does suggest a certain amount of 

positive correlation, for this number of returns it is significant 

only at the less than 75% level. 

A deeper understanding of the model would lead us to expect negatively 

correlated return estimates, even though the true returns are not cor­

related. This subject is explored in [1�J where negative correlation 

is explained as part of a unified theory that contains theoretical con­

fidence intervals for the coefficient estimates as functions only of 

the parameters n and N and the standard deviation of the y variables. 

Since there is no constant term in the model we cannot expect the 

residuals to total exactly zero. The mean residual, however, is ,027 

with a standard deviation of ,466. Therefore the mean is not signifi­

cantly different from zero. This is consistent with the assumption 

that the true disturbances have a mean of exactly zero. 

The distribution of residuals is more peaked than the normal distribu­

tion with 91% within one standard deviation of the mean. In their 

tails, the residuals are skewed appreciably to the right with 8% to 

the right of one standard deviation from the mean and only 1% to the 

left of one standard deviation from the mean. 

Observations whose residuals are greater than 1 correspond to proper­

ties whose prices have grown 172% more than is explained by the model. 

6% of the observations are in this category. If we assume for the 

moment that these observations are outliers because, perhaps major 

additions or other improvements have been made in the properties, then 

the right-skewness of the residuals largely disappears and their 

(small) positive bias also is diminished. 
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FIGURE 1a 

BSTl'MA!BS OP MONTHLY PRICE LEVELS 

1972(1) 1973(1) 1974(1) 1975(1) 

FIGURE 1b 

BSTIIIAHS OP QUARTERLY PRICE LEVELS 

80 72 

1978(1) 1977(1) 




















